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We examine surfactant transport on a highly viscous film overlying a much less viscous
layer, aimed at situations within the smaller pulmonary airways, wherein the highly
viscous film corresponds to the mucus layer, that rides atop the Periciliary liquid
layer (PCL). To this end, we generate a variant of the lubrication approximation
by promoting terms which would have otherwise been neglected within standard
lubrication theory; this is reminiscent of theories involving free films, viscous jets
and threads. We also account for the presence of van der Waals forces, which could
rupture the thin bilayer fluid coating the small airways. This is a potential difficulty
for surfactant replacement therapy (SRT) since rupture will leave behind pools of
stranded surfactant thereby restricting the levels reaching the smallest airways and
potentially leading to clinical failure. In the present study, the presence of the mucus
layer and its effect on the spreading characteristics and film rupture is investigated
for a wide range of system parameters using analytical techniques and numerical
simulations.

1. Introduction
Surfactant replacement therapy for the treatment of respiratory distress syndrome

(RDS) both in neonates and adults (Robertson 1984) is widely used and relies upon
external delivery of surfactant into the diseased lungs. RDS is manifested by airway
closure, oedema, and decreased lung compliance, often with fatal consequences.
Surfactant is also utilized to transport chemicals for various treatments to lung
diseases, and is proposed as a delivery mechanism for gene therapies (Banerjee &
Puniyani 2000). Achieving a fundamental understanding of the surfactant delivery
process has led to considerable interest in modelling surfactant spreading on the
surface of thin liquid films (Borgas & Grotberg 1988; Gaver III & Grotberg 1990;
Jensen & Grotberg 1992; Espinosa et al. 1993; Grotberg 1994; Grotberg, Halpern
& Jensen 1995; Halpern, Jensen & Grotberg 1998; Espinosa & Kamm 1999) which
represent the liquid lining of pulmonary airways. Until recently, these modelling
studies had focused on the dynamics of a single Newtonian layer, taking into account
Marangoni stresses, surface diffusion, gravity, capillarity and intermolecular forces,
in both simple and complex lung geometries. The thin liquid lining of pulmonary
airways, however, is in fact a bilayer consisting of a non-Newtonian mucus layer
overlying a Newtonian watery Periciliary liquid layer (PCL). The bilayer situation is
also of interest in coating flows, and highly viscous surface layers are important in
foams where Marangoni forces can also be present (Naire, Braun & Snow 2000).
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Recently, Craster & Matar (2000, hereafter referred to as Paper I), have extended
the modelling to incorporate this bilayer nature of the airway lining, and the shear
thinning and yield stress components of mucus rheology. Their results demonstrate
that the flow profiles and surfactant spreading rates can be greatly affected by mucus
rheology. In particular, they showed that the time taken to recover Newtonian spread-
ing rates increases with increasing mucus yield stress and shear-thinning character.
In these cases, they also showed that spreading was accompanied by the formation
of large mucus peaks concentrated at the surfactant leading edge; these peaks could
potentially cause airway blockage, another undesirable clinical feature. The majority
of these results, however, were obtained with a mucus to PCL thickness ratio of
3 : 1, which may be more reflective of the clinical conditions in the upper airways
wherein surfactant transport may be influenced, or indeed primarily driven, by grav-
ity. Nevertheless, the results should still be applicable to medical conditions, such as
cystic fibrosis, which can significantly affect the depth of the mucus layer throughout
the lung, and to some models of bolus insertion in the upper airways, which assume
Marangoni-driven flows (Halpern et al. 1998). However, dependent upon the respir-
atory ailment, this ratio is likely to vary across the generations in the pulmonary tree
and may be much smaller in the lower airways (Sleigh 1991).

We focus on modelling the spreading characteristics in the smaller airways wherein
spreading on the thin mucus films is wholly Marangoni driven. The rheology of
mucus can also vary substantially between individuals, clinical conditions, and even
lung generation, with mucus viscosities for some diseases apparently several orders
of magnitude greater than those of the watery PCL; thus, surfactant spreads on the
surface of a highly viscous mucus film overlying a PCL layer. This spreading process
is modelled here by generating a highly viscous ‘skin’ theory somewhat reminiscent
of the Boussinesq–Scriven surface viscosity theory (Scriven 1960) or the embedded
highly viscous strands used to model highly elongated polymers in high Deborah
number flows (Harlen, Rallison & Chilcott 1990) but derived here using lubrication
scalings. The approach taken here is very similar to that often used to generate the
equations governing the evolution of free films (Erneux & Davis 1993; De Wit, Gallez
& Christov 1994) and of thin viscous threads and jets (Papageorgiou 1995a, b; Ida
& Miksis 1998a, b; Craster, Matar & Papageorgiou 2002) using the long wavelength
approximation. Numerical simulations together with similarity scalings are utilized to
investigate whether this induces any changes in the transport rates predicted by the
single-layer (Jensen & Grotberg 1992) and bilayer (Paper I) theories. The effect of the
presence of the skin on the possibility of film rupture, a potential difficulty in surfactant
replacement therapy, is also investigated; non-uniform spreading and insufficient
amounts of surfactant reaching the smaller airways potentially lead to clinical failure.
Although the rupture of thin pure liquid films, or a uniformly surfactant coated
film, has been a well-studied problem (Ruckenstein & Jain 1974; Williams & Davis
1982; Sharma & Ruckenstein 1986; Zhang & Lister 1999; Witelski & Bernoff 1999,
2000) potential rupture instabilities associated with a spreading monolayer have
been less well studied (Jensen & Grotberg 1992). We shall focus on the highly
viscous nature of the bilayer and isolate these effects from non-Newtonian effects
even though mucus is known to possesses considerable non-Newtonian rheological
characteristics.

The rest of the paper is organized as follows: the problem is formulated in § 2. In
§ 3, we present similarity solutions of the evolution equations describing the spreading
process and full numerical solutions are provided in § 4. Finally, concluding remarks
are provided in § 5.
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2. Formulation
Our aim is to take advantage of the remarkably thin fluid layers that exist in the

lung, and high mucus viscosities, to determine a reduced set of evolution equations
that capture the essential dynamics.

2.1. The governing equations

Two thin films of Newtonian, incompressible, immiscible, fluids are bounded from
below by a horizontal, rigid and impermeable solid substrate located at z = 0. The
upper layer consists of mucus of viscosity η and density ρ, while the lower layer is
the Periciliary liquid layer (PCL) of viscosity η̄ and density ρ̄; all material variables
associated with the PCL have the distinguishing overbar. A dilute monolayer of
insoluble surfactant is introduced at the air–mucus interface, which is located at
z = h(x, t); the surface tension of this interface is denoted by σ(x, t). This surfactant,
whose concentration is denoted by Γ (x, t), will be referred to as exogenous; any
surfactant already present on z = h(x, t) is endogenous. The influence of endogenous
surfactant on the spreading dynamics has been well studied (Espinosa et al. 1993;
Grotberg et al. 1995; Bull et al. 1999) and will not be considered in the present work.

Surfactant solubility is an issue that could be important in applications, and has
been considered by Halpern & Grotberg (1992) and Jensen & Grotberg (1993); this
involves incorporating an advection–diffusion equation for surfactant concentration
within the liquid layer into the analysis. We shall leave this issue aside and concentrate
upon developing the present highly viscous theory for insoluble surfactant. From the
insoluble assumption it follows that the mucus–PCL interface, z = h̄(x, t), is devoid
of surfactant, hence its surface tension will remain a constant denoted by σ̄. The
action of the cilia, which are potentially present within the PCL, will also be ignored
in the present work. Variations in surfactant concentration along the upper surface
z = h(x, t) give rise to gradients in the surface tension, σ(x, t), that, in turn, induce
surface stresses that drive surfactant transport in the direction of the uncontaminated
air–mucus interface. This Marangoni-driven fluid motion is described by the velocity
field, u = (u(x, z, t), w(x, z, t)) with origin at the centre of the surfactant deposition,
while pressure is denoted by p(x, z, t).

Conservation of momentum and mass in the mucus layer yield

ρ
Du

Dt
= −∇(p+ φ) + ρg+ ∇ · τ , ∇ · u = 0, (2.1)

where τij denotes the components of the deviatoric stress tensor and g is acceleration
due to gravity. The equations for the lower layer are identical save for the addition
of an overbar. The stresses are related to the strain rates via τij = ηγ̇ij , where
the viscosity η = η0η̂ with η0 as a reference viscosity. The usual conservation-of-
momentum equations are augmented by φ, a potential energy per unit volume in the
liquid bilayer representing the presence of van der Waals forces. The potential within
the mucus layer, φ, represents an interaction between the air–mucus interface and
the base, and an interaction between the mucus–PCL interface and the air–mucus
interface. The potential within the PCL layer, φ̄, represents an interaction between
the air–mucus interface and the base, and an interaction between the mucus–PCL
interface and the base. These potentials are given by Israelachvili (1985):

φ(x, t) =
A1

h3
+

A2

(h− h̄)3
for h̄ < z < h, φ̄(x, t) =

A3

h3
+
A4

h̄3
for 0 < z < h̄,

(2.2)
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where theAi are four different so-called Hamaker constants; for a single layer only a
single Hamaker constant appears. The gradient of this potential represents the force
per unit volume due to intermolecular forces; other intermolecular forces such as, for
instance, electric double layer forces, will not be considered here.

Although the complex rheological properties of mucus, such as yield stress and
shear thinning (Paper I) as well as viscoelasticity, play a significant role in the
dynamics of the spreading process, in this paper we shall concentrate on the situation
in which mucus is treated as a Newtonian fluid, but having a much higher viscosity
than that of the underlying PCL layer. This assumption is supported by order-of-
magnitude estimates of the viscosity found in the biomedical literature (Silberberg
1983). Different clinical conditions lead to widely varying values for mucus viscosity;
in some circumstances the viscosity mismatch may be less dramatic and our earlier
theory, Paper I, is appropriate.

The concentration of surfactant at the surface, Γ (x, t), satisfies a surface transport
equation (Stone 1990),

Γt + ∇s · (usΓ ) + (∇s · n)Γ (u · n) = D∇2
sΓ (2.3)

on z = h(x, t); the surface gradient operator, ∇s, is defined ∇s = [I−n n] ·∇ ≡ Is ·∇ and
us is the surface velocity: us = Is · u; and D denotes the surface diffusion coefficient.
The normal to the free surface, n, is defined n = (−hx, 1)/

√
h2
x + 1.

These equations are solved subject to appropriate boundary conditions. No slip is
imposed at the solid substrate,

u = 0 and w = 0 on z = 0. (2.4)

At the mucus–air interface, z = h(x, t), we have the kinematic boundary condition

ht + uhx = w, (2.5)

together with stress boundary conditions expressed by

(τ − Ip) · n = σκn+ ∇sσ, (2.6)

in which κ = ∇s · n denotes the curvature of the air-mucus interface. At the mucus-
PCL interface, z = h̄(x, t), the velocities are continuous and the kinematic condition
is h̄t + ūh̄x = w̄. We also assume that the stresses are continuous at z = h̄, and since
the surfactant is insoluble ∇sσ̄ = 0.

As it stands the system of governing equations and their related boundary con-
ditions form a complicated coupled system. Asymptotic reduction to a simpler, but
still physically relevant, system follows by utilizing the small aspect ratio arising from
the remarkably thin fluid films that line the airways. Separate scalings will be chosen
for two situations, negligible and significant van der Waals forces, leading to the
derivation of two separate sets of dimensionless coupled evolution equations.

2.2. Negligible van der Waals forces

2.2.1. Scaling

The governing equations in the absence of van der Waals forces are rendered
dimensionless using scalings that balance viscous stresses with the driving Marangoni
forces. Using the familiar route of a lubrication-style analysis we utilize a characteristic
thickness of the fluid layer, H, as the dimension of z, and L as the characteristic
horizontal length scale; ultimately we set ε =H/L� 1. We measure the speed u by
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V, w by HV/L, and time by L/V so that

x =Lx̃, z =Hz̃, u =Vũ, w = (VH/L)w̃, t = (L/V)̃t, h =Hh̃, (2.7)

in which the tilde denotes dimensionless quantities. To non-dimensionalize the
equations involving the surfactant and surface tension we introduce

σ = σm +S σ̃, Γ = ΓmΓ̃ . (2.8)

The terms Γm and σm represent concentration of surfactant and surface tension,
respectively, of the most contaminated part of the interface; S = σ0−σm corresponds
to the spreading pressure wherein σ0 is the surface tension of a perfectly clean,
surfactant-free interface. For pressure we introduce p = Sp̃/H. We then select the
following characteristic velocity and pressure scales by balancing Marangoni stresses
with viscous retardation:

V =
SH
η0L , P =

S
H , (2.9)

where P is the pressure scale. The strain rates and stresses then scale as follows:

τij =
S
L τ̃ij , γ̇ij =

S
η0L

˜̇γij . (2.10)

From here on we shall consider non-dimensionalized variables and we drop the
tilde. It emerges that the Reynolds number, Re ≡ ρHV2/S, and Bond number,
G ≡ ρgH2/S, which gives a measure of the relative importance of gravity and
surface tension gradients, are both very small for typical values that are relevant to
the application (table 2 of Paper I) and are henceforth neglected. Finally, we ignore
capillary effects in the analysis of surfactant spreading in the absence of van der
Waals forces. These capillary terms, however, will be reintroduced later when we
investigate van-der-Waals-driven bilayer rupture.

The rates of strain, γ̇ij , are given by

γ̇ij =

(
2εux uz + ε2wx

uz + ε2wx 2εwz

)
(2.11)

and are related to the stresses, τij , via

τij = η̂(z)γ̇ij , η̂(z) =

{
η1/ε

2, d < z < h

1, 0 < z < d.
(2.12)

Thus, in the mucus layer we have set the viscosity to η̂ = η1/ε
2, that is, we force

the viscosity to be very large and this promotes several terms, which, in lubrication
theory, would have normally been ignored. In the PCL layer, on the other hand,
η̂ = 1 and we obtain familiar equations, although since the motion is coupled to
the upper layer it still ‘feels’ the influence of the highly viscous mucus layer. This
assumption regarding the viscosity of the mucus, that it is much larger than that of
the PCL layer, is vital in our development of the theory. In terms of the asymptotic
expansion pursued later, this enables us to select the appropriate terms in the modified
lubrication approximation that account for the enhanced resistance to flow.

Similar large viscosity contrasts between a surface layer and an underlying film
occur in several other contexts, for instance in cooling lava flows (Balmforth &
Craster 2002) where the fluid has either a highly temperature-dependent viscosity or
is developing a solid surface crust, or both. Although the viscosity and fluid motion



90 O. K. Matar, R. V. Craster and M. R. E. Warner

coupling with an evolving thermal boundary layer complicates matters, related ideas
can be pursued (Balmforth & Craster 2002). Similar ideas also arise in ice flows where
the ice and melt water have dramatically different viscosities (Toniolo 2001).

2.2.2. The dimensionless thin layer equations

Substitution of the scalings defined above into the governing equations, constitutive
relations and boundary conditions and formally letting ε → 0 leads to the reduced
form of the governing equations, in the so-called lubrication limit. Note, however, that
due to the earlier viscosity assumption we shall retain more terms than is normally
the case. We list the dimensionless thin-layer equations in the mucus and PCL layers,
as well as the associated boundary conditions at the interfaces z = h and z = h̄, and
base, z = 0.

In the mucus layer, the equations of momentum conservation and the continuity
equation become

ε2px = η1(uzz + ε2uxx), pz = η1(wzz + ε2wxx), ux + wz = 0, (2.13)

plus higher-order terms. In the underlying PCL layer, the equations are

p̄x = ūzz + ε2ūxx, p̄z = ε2(w̄zz + ε2w̄xx), ūx + w̄z = 0. (2.14)

At z = h(x, t) the normal and shear stress boundary conditions are expressed by

p = η1hxuz − 2η1ux + O(ε2), η1

(uz
ε2

+ wx − 2hxux

)
+ hxp = σx + O(ε2), (2.15)

while the kinematic boundary condition and the surfactant transport equation are
given by

ht +
∂

∂x

∫ h

0

u dz = 0, Γt + (usΓ )x =
1

Pe
Γxx, (2.16)

where Pe is the Péclet number.
At the interface, z = h̄(x, t), we have continuity of velocity, u = ū and w = w̄, in

addition to continuity of the normal and shear stresses, respectively expressed by

p− p̄ = η1(2wz − h̄xuz), ūz = η1

(uz
ε2

+ wx − 2h̄xux

)
+ h̄x(p− p̄). (2.17)

Additionally, we have the kinematic boundary condition:

h̄t +
∂

∂x

∫ h̄

0

ū dz = 0. (2.18)

At z = 0, the no-slip and no-penetration conditions are imposed: ū = 0, w̄ = 0.
We expand all variables in powers of ε as u = u0 + ε2u2 + · · ·, w = w0 + ε2w2 + · · ·,

with a similar expansion for the other variables and analogous quantities in the PCL
layer; these are substituted into the governing equations and boundary conditions
and terms of the same order are collected. Our ultimate aim is the derivation of
evolution equations that govern the total height, mucus layer depth and surfactant
distribution, and it will turn out that we require an evolution equation for the mucus
velocity. Hence, there are close connections with similar equations derived for free
films, viscous threads and jets in the presence and absence of surfactant (Erneux
& Davis 1993; De Wit et al. 1994; Papageorgiou 1995a, b; Ida & Miksis 1998a, b;
Craster et al. 2001) where the dynamics of the exterior fluid (air in all cases) have
been neglected. Details of the derivation of the evolution equations for the mucus
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velocity, air–mucus interface, mucus–PCL interface and surfactant concentration are
provided in the Appendix.

2.2.3. The evolution equations

The full system of coupled evolution equations is

h0t = −
[
u0

(
h0 − h̄0

2

)]
x

, Γ0t = −[u0Γ0]x +
1

Pe
Γ0xx, (2.19)

h̄0t = −
[
u0h̄0

2

]
x

, u0 = h̄0(σ0x + 4η1[d0u0x]x), (2.20)

in which d0 is the thickness of the mucus layer. This coupled system of evolution
equations governs the surfactant-driven flow for a thin fluid bilayer where the upper
layer is highly viscous. As noted by Erneux & Davis (1993) the 4η1δ0 is not coinciden-
tal: it has an interpretation as the Trouton viscosity, that is, the ratio of extensional
to shear viscosities in simple Newtonian flow. Note that in the limit η1 → 0 and
h0 = h̄0, the above equations reduce to those describing the spreading of an insoluble
surfactant monolayer on a single, thin Newtonian layer (Jensen & Grotberg 1992).

A surfactant equation of state is needed to close the above system of equations.
Since the primary objective of the present work is to investigate the effect of large
viscosity contrast between the mucus and PCL layers, we restrict ourselves to a simple
linear equation of state, σ = 1−Γ , although nonlinear laws are often used in practice
(Gaver III & Grotberg 1990; Jensen & Grotberg 1992).

At this point, it is, perhaps, worth comparing the current theory with the classical
‘skin’ viscosity theory of Boussinesq and Scriven (Scriven 1960; Edwards, Brenner &
Wasan 1991), which considers a surface skin of infinitesimal thickness having a surface
viscosity. This introduces a restraining force at the surface which is the product of
a so-called dilatational viscosity multiplied by the rate of expansion of the surface;
we shall ignore shear surface viscosity effects. That theory is derived in a different
manner, not based upon highly viscous skins with a variable skin depth, but from
the consideration of mass and momentum balances upon a deforming infinitesimally
thin interface. If one proceeds using that theory, arbitrarily increasing the dilatational
viscosity, λ, by an order 1/ε2 to mimic the highly viscous mucus, one obtains the
following evolution equations:

h0t +

[
h0

2
u0

]
x

= 0, Γ0t + [u0Γ0]x =
1

Pe
Γ0xx, u0 = h0[λu0xx + σ0x] (2.21)

(see also Jensen & Grotberg 1992). Once again the crucial equation is that for an
evolving surface velocity, u0(x, t). We recover (2.21) from equations (2.19)–(2.20) by
taking the simultaneous limit that η1 → ∞ whilst δ0 → 0 such that η1δ0 → λ and
η1δ0x → 0; there are minor differences in the final equations in the axisymmetric
case if this is done. Nonetheless, it is clear that both approaches are closely related
and one could use the arguments presented here as a justification for the use, and
interpretation, of surface viscosity; several recent papers utilize the surface viscosity
theory directly, for instance Naire et al. (2000) analyse drainage of thin films covered
with insoluble surfactant in the limit of high surface viscosity.

2.3. Significant van der Waals forces

In the absence of surfactant, van-der-Waals-driven thin-film rupture has recently been
of renewed and considerable interest. For a single layer, in the absence of surfactant-
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driven flows, Zhang & Lister (1999a, b) and Witelski & Bernoff (1999, 2000) have
shown that forces due to surface tension, van der Waals and viscous dissipation are
all important near the rupture event; this is in contrast to other earlier analyses
(Burelbach, Bankoff & Davis 1988) that assumed surface tension was asymptotically
negligible there. These recent papers give scalings for the rate of thinning of the
thin liquid layer and detail similarity solutions; our aim is complementary, but we
now include surfactant and a thin highly viscous ‘skin’. This proposed system has
previously been studied in the simplified Newtonian single-layer limit by Jensen &
Grotberg (1992). We now aim to formulate the governing equations for a thin, highly
viscous mucus layer overlying a much less viscous PCL layer, taking into account
both capillary and van der Waals forces.

2.3.1. Scaling

The chosen scalings remain largely unchanged from § 2.2.1 with the exception of
the pressure and velocity scalings. We select

V =A/η0HL, P =A/H3, (2.22)

in order to balance pressure with van der Waals forces and viscous retardation with
the pressure and van der Waals terms; these are the dominant physical processes in the
rupture regime. Here, A is a typical Hamaker constant value (so that Ai =AAi, i =
1, 2, 3, 4, the Ai-being the nondimensional Hamaker constants). Substitution of these
scalings into the governing equations and boundary conditions and neglecting inertial
and gravitational terms yields a similar set of dimensionless thin-layer equations
to those encountered in § 2.2.2, except for the appearance of the van der Waals
and capillary terms. A dimensionless Marangoni parameter, M, also emerges which
reflects the significance of Marangoni stresses to van der Waals forces:

M =
HS
ηoLV ≡

H2S
A . (2.23)

If we consider typical values (de Souza & Gallez 1998) of A ∼ 10−13 erg and
σm ∼ 10 dyn cm−1, then choosing different values for the characteristic fluid thickness
we can estimate the Marangoni number. First, ifH∼ 10−5 cm, we have ε = 10−2 and
M = 103 S . In this circumstance surface tension gradients potentially dominate van
der Waals and capillarity effects, and we recover our earlier analysis. To investigate
Marangoni effects on rupture we take S = ε2s, that is, a weak spreading pressure
more representative of the actual conditions at the inception of rupture. The net effect
of choosing this scaling is that the pressure in the layer is now

p0 = −
(

1 +
ε2sσ0

σm

)
κ,

and the contribution to the spreading process from capillarity, which is now constant,
and that due to surface tension gradients, the order-ε2 term, separate (Jensen &
Grotberg 1992). For much thinner fluid layers, say H∼ 10−7 cm with A ∼ 10−14 erg
and σm ∼ 10 dyn cm−1 then ε ∼ 10−1/2 and M ∼ S . In this case it may be possible
that surface tension gradients could also affect capillarity. We have explored this
possibility and found the results to be largely unchanged. In the interests of brevity,
therefore, we do not consider this possibility further in the present work and in the
remainder of the text we take S = ε2s; thus, terms involving S make negligible
contribution and are henceforth ignored.



Surfactant transport 93

2.3.2. The evolution equations

Following the same procedure as in § 2.2.2 and the Appendix, we obtain the
following equation for the velocity in the mucus layer:

u0(x, t) = − h̄
2
0

2
(p̄0 + φ̄0)x − h̄0d0(ps + φ0)x + (4η1[d0u0x]x +Mσ0x)h̄0, (2.24)

where ps, the pressure due to the air–mucus curvature, and p̄0, are expressed by

ps = −κ = −h0xx, p̄0 = −κ− κ̄ = −(h0xx + h̄0xx). (2.25)

The evolution equations for h0, h̄0 and Γ0 are

h0t = −
[
u0

(
h0 − h̄0

2

)]
x

+
1

12
[h̄3

0(p̄0 + φ̄0)x]x, (2.26)

h̄0t = −
[
u0h̄0

2

]
x

+
1

12
[h̄3

0(p̄0 + φ̄0)x]x, Γ0t = −[u0Γ0]x +
1

Pe
Γ0xx. (2.27)

The potentials, φ0(x, t) and φ̄0(x, t), follow from an expansion of equation (2.2):

φ0(x, t) =
A1

h3
0

+
A2

d3
0

for h̄0 < z < h0, φ̄0(x, t) =
A3

h3
0

+
A4

h̄3
0

for 0 < z < h̄0.

(2.28)

Setting the Ai to zero, M = 1 and omitting the capillary terms, equations (2.24)–
(2.27) become identical to equations (2.19)–(2.20). Moreover, in the limit h0 = 0,
Ai = 0 for i = 1, 2 and 3, A4 = A and η1 = 0, equations (2.24)–(2.27) reduce to the
usual system of equations governing van-der-Waals-driven rupture of a single layer in
the presence of surfactant (Jensen & Grotberg 1992). The ‘0’ subscripts are henceforth
dropped on h0, h̄0 and Γ0; we retain the subscript on u0 to emphasize that this is the
surface velocity.

Equations (2.19)–(2.20) and (2.24)–(2.27) are solved numerically for a wide range
of parameter values. In § 3, however, we shall look at similarity scalings and solutions
for these equations in certain limits. These solutions will provide suitable limiting
cases with which the numerical solutions can be validated.

3. Similarity solutions
Here, we derive similarity scalings for equations (2.19)–(2.20) and (2.24)–(2.27).

3.1. Negligible van der Waals forces

It is evident that in the low-diffusion limit, Pe → ∞, the single-layer evolution
equations (Jensen & Grotberg 1992; Jensen 1994) and the bilayer evolution equations
where the mucus viscosity is of order one (Paper I) admit similarity solutions.
Similarity solutions also exist for the bilayer case considered in the present work,
where the mucus viscosity has been promoted. The analysis required is in essence
similar to that of Jensen & Grothberg (1992), Jensen (1994) and Paper I, and a brief
description of these scalings follows. The similarity solutions will be compared, at
least for long times, with the full numerical solutions in § 4.

Substitution of the similarity variables

ξ =
x

ξstα
, h(x, t) =

H(ξ)

tβ
, h̄(x, t) =

D(ξ)

tβ
, Γ (x, t) =

ξ2
s G(ξ)

tγ
, u0(x, t) =

ξsU(ξ)

tζ
,

(3.1)
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into equations (2.19)–(2.20) yields

βH + αξHξ =
1

tα+ζ−1

[
U

(
H − D

2

)]
ξ

= 0, βD + αξDξ =
1

tα+ζ−1

[
UD

2

]
ξ

, (3.2)

γG+ αξGξ =
1

tα+ζ−1
[UG]ξ, (3.3)

U = D

[
η1

ξ2
s t

2(α+β)
{4(H −D)(∂ξU)ξ + 2(H −D)ξ(Uξ + ∂ξU)} − 1

tα+β+γ−ζ Gξ
]
, (3.4)

where the spreading exponents α, β, γ and ζ are to be found; ξs is a scaling factor to
place the advancing front at ξ = 1.

There are two different cases to examine: β 6= 0 and β = 0; in the latter case we
would expect the heights of the travelling peaks to remain approximately constant in
time.

3.1.1. β 6= 0

Demanding that β = −α, γ = 1 − α, ζ = 1 − α, the equations become self-similar
and the spreading rate α can then be found from the rate at which surfactant is
supplied into the system; we use αs to describe this latter rate. Let Q(t) be the mass
of surfactant, and Q0 be the initial mass of surfactant present in the system at t = 0,
then

Q(t) = Q0t
αs =

∫ ∞
0

Γ (x, t) dx = ξ3
s t
α−γ
∫ ∞

0

G dξ. (3.5)

Thus we find γ = α− αs, and hence

α = −β =
1 + αs

2
, γ = ζ =

1− αs

2
. (3.6)

A general analytical solution of (3.2)–(3.4) is apparently unavailable. Such a solution,
however, can be obtained for the case of a large viscosity contrast, η1, between
the mucus and PCL layers and a finite amount of surfactant (αs = 0). An equation
for the thickness of the mucus layer, ∆ = H − D, is obtained from equation (3.2):
∆−ξ∆ξ+2(U∆)ξ = 0. For large η1, several terms decouple from (3.4), which simplifies
to ∆Uξ = 0 after using the conditions ahead of the surfactant leading edge. This then
leads to

U =
ξ

2
, ∆ = 0, (3.7)

for ξ < 1. Equation (3.7), and the associated scalings, will be used to validate the
numerical solutions of the governing equations in the limit of large η1, which will
be presented in the following section. In particular, it will be shown that in planar
geometry, the predicted t1/2 scaling is in fact captured by the numerical simulations.
(Similarly, we have verified that the axisymmetric scalings, t1/3, are also recovered.)

3.1.2. β = 0

Here we assume that β = 0, that is, we expect the height scaling of the evolving
pulses to remain constant with increasing time. Demanding ζ = 1− α, ζ = γ + α and
using surfactant mass conservation, so αs = α− γ, yields the scaling exponents as

α =
1 + αs

3
, γ =

1− 2αs

3
, ζ =

2− αs

3
. (3.8)

Clearly in the case η1 ∼ O(ε2) we recover the similarity scalings derived in Paper I
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for the case of a Newtonian bilayer with the upper layer having a high yield stress.
This restraining upper high-yield-stress layer has some physical similarities with the
highly viscous skin; both prevent shear in the layer. For larger η1 the variables take so
long to evolve to the similarity scalings that they appear to follow another scaling. For
either long times, or for bilayers without such large viscosity mismatch, the following
similarity solutions are obtained:

H(ξ) = (1− δ0)[2ξΘ(1− ξ) + 1−Θ(1− ξ)] + δ0Θ
′(1− ξ),

D(ξ) = (1− δ0)[2ξΘ(1− ξ) + 1−Θ(1− ξ)],

G(ξ) =
α(1− ξ)

2(1− δ0)
Θ(1− ξ), U(ξ) = αξΘ(1− ξ),

 (3.9)

where Θ is the Heaviside step function, and its derivative, Θ ′, is the Dirac-delta
function. Here δ0 is the initial mucus layer thickness, and the scaling constant, ξs, is
given by

ξs = [12Q0(1− δ0)]
1/3, (3.10)

in which Q0 =
√
π/2 in the numerical solutions. (In axisymmetric geometry, ξs =

[16Q0(1 − δ0)]
1/4 with Q0 = 1/2.) The solution for D(ξ) is compared with numerical

simulations in § 4.

3.2. Significant van der Waals forces

In the presence of van der Waals forces, (2.24)–(2.27) can be recast in terms of the
following similarity variables:

ξ =
x− xr

(tr − t)α , h(x, t) =
H(ξ, τ)

(tr − t)β , h− h̄(x, t) =
∆(ξ, τ)

(tr − t)$ ,

Γ (x, t) =
G(ξ, τ)

(tr − t)γ , u0(x, t) =
U(ξ, τ)

(tr − t)ζ , (3.11)

where τ = tr−t. For a thin mucus film, with all the Hamaker constants non-zero, there
are two modes of rupture: the mucus film itself ruptures with the PCL remaining
intact, or the PCL and mucus simultaneously approach the base and effectively
rupture together.

The former occurs for small η1 where the mucus layer provides less resistance
to rupture, and the latter for large η1. In this latter case assuming that h, h̄ scale
identically and that van der Waals, capillarity and viscous forces balance then the
simpler, single-layer limit scalings are recovered, that is, α = 2/5, β = −1/5 (Zhang
& Lister 1999b) and γ = −3/10 (Warner, Craster & Matar 2002), the scalings for ζ
and $ appear, from later numerical results, to be 1 and −3/10 respectively.

When the mucus alone ruptures, we assume that h̄ is approximately constant and
that the dominant terms are associated with the van der Waals forces within the film,
and the capillarity and longitudinal stresses there. If this is the case, then one obtains
ζ ∼ 5/6, α ∼ 1/6, $ ∼ −1/3 and β ∼ −1/12, the surfactant becomes enslaved to
the mucus thickness and γ ∼ −1/3. These scalings will be compared with numerical
simulations.

4. Numerical results
In this section, we present numerical solutions of the evolution equations (2.19)–

(2.20) and (2.24)–(2.27) for a wide range of system parameters, and compare them
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with the similarity solutions/scalings. We begin by providing some details of the
numerical schemes employed to carry out the computations.

4.1. Solution procedure

The numerical scheme primarily utilized is a PDE solver, EPDCOL (Sincovec &
Madsen 1979; Keast & Muir 1991), a highly efficient and versatile code designed
for the solution of systems of nonlinear parabolic equations. It is based upon finite-
element collocation in the spatial coordinate and the method of lines approach for
time. Further checks on the accuracy of the numerical computations were performed
using an adaptive grid scheme, Blom & Zegeling (1994), as well as finite-difference
schemes (Matar & Troian 1999a, b). Typically 2000 grid points were employed on
a computational domain of length 30 dimensionless units, although this had to be
extended to 40 units in the case of large-η1 simulations (see below). The results of our
simulations were in excellent agreement with earlier published results for spreading on
Newtonian (Jensen & Grotberg 1992) and non-Newtonian single and bilayers (Paper
I). Our numerical solutions are also compared with the predictions of the similarity
solutions derived analytically in § 3.

Spreading is forced by the following initial conditions:

h(x, 0) = 1, d(x, 0) = h̄0 < 1, Γ (x, 0) = exp(−x2), u0(x, 0) = 0, (4.1)

where h̄0 is a constant height with 0 < h̄0 < 1. Initial conditions for the surfactant
concentration, which are similar in form to (4.1), have previously been used to provide
a smooth approximation to the concentration within a monolayer (Jensen & Grotberg
1992; Matar & Troian 1998; Matar & Troian 1999a; Paper I).

Numerical solutions are obtained subject to the following set of boundary con-
ditions:

hx = h̄x = Γx = u0 = 0 at x = 0;
h = 1, h̄ = h̄0, Γ = 0, u0 = 0 as x→∞.

}
(4.2)

These conditions represent no flux of surfactant and symmetry at the flow origin,
and the recovery of undisturbed conditions far from the original point of surfactant
deposition located at the origin.

Solutions are obtained for the range 0.1 6 η1 6 100 and, unless otherwise stated,
for δ0 = 0.1. Computations are performed for times t = 40–104. These values are
chosen to be long enough to enable comparisons with the self-similar solutions. The
Péclet number is fixed to be Pe = 1000 in line with the order-of-magnitude estimates
(table 2 of Paper I), which corresponds to a primarily Marangoni-driven spreading
process, while lower values are not representative of typical spreading conditions.
Perhaps surprisingly, larger values of Pe do not lead to the rapidly varying spatial
derivatives seen in previous studies, since here the skin serves to smooth out these
shock-like features. The only real effect of increasing Pe in the range Pe > 1000 is
that the heights of the mucus peaks in the advancing front are marginally increased,
and their widths are slightly narrowed.

Within all the numerical results we define the ‘front position’ to be that where the
fluid layer attains its maximum, h = hmax.

4.2. Negligible van der Waals forces

Numerical solutions of the equations governing spreading in the absence of van der
Waals forces are presented first.
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Figure 1. Typical evolution for t = 0 to 100 in steps of 10 time units, the arrow showing increasing
time. The parameter values are: η1 = 1, Pe = 1000 and δ0 = 1/10. The dotted line in (e) shows the

similarity solution for h̄(x, t) valid for small η1.

4.2.1. Typical simulation

Figure 1 shows the spatio-temporal evolution of h, d, Γ and u0 for Pe = 1000,
η1 = 1 and δ0 = 0.1, typical parameter values. The spreading process is accompanied
by large deformations in the underlying bilayer: rapid and severe thinning near the
original surfactant deposition at the flow origin and upwelling of the fluid bilayer
at the surfactant leading edge. These upwellings are particularly pronounced for the
mucus layer, assuming the form of propagating pulse-like structures, compared with
the thickened fronts in the underlying PCL layer. Close inspection of the concentration
profiles does not reveal monotonic decrease but rather considerable steepening of the
profiles into fronts at the surfactant leading edge immediately preceded by shallow
minima; this is markedly different to the behaviour of the single layer (Jensen &
Grotberg 1992) and previously studied bilayer cases (Paper I). These sharp fronts
seem to coincide with the peaks in the mucus and PCL layers as well as the maxima
in the velocity profiles. Inspection of the height and velocity profiles reveals that
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Figure 2. The effect of η1 on the flow characteristics; the other parameter values are Pe = 1000
and δ0 = 0.1. The similarity solution for h̄(x, t), valid for small η1, is also shown.

undisturbed conditions are recovered a relatively large distance downstream from
the surfactant leading edge. As the spreading evolves, gradients in the surfactant
concentrations decrease in magnitude due to dilution, as does the velocity in the
mucus layer.

It is notable that shock-like, rapidly varying, solutions might invalidate the lubri-
cation approximation, and some care is required in the interpretation; the pulse-like
structures have a characteristic width proportional to tα and so lengthen over time;
additionally surface diffusion, and in the present case the action of the mucus film,
act to smooth out very rapid variations.

Figure 1 also shows that numerical solutions and similarity scalings compare
favourably over a large proportion of the domain, with the exception of a narrow
region near the flow origin in which the numerical solutions must match the imposed
no-flux and symmetry boundary conditions. This agreement is also reflected in the
comparison of the numerically generated position of the front with that predicted by
the similarity scalings. We shall revisit this comparison in the following subsections
in which we discuss the effect of η1 on the dynamics.

4.2.2. The effect of varying η1

Figure 2 shows the effect of varying the mucus viscosity on the flow profiles and
spreading rates. An increase in the viscosity gives rise to less pronounced, smoother
fronts in the mucus and PCL which decay spatially over large distances as well as
steeper surfactant concentration profiles. The latter feature is presumably brought
about by the increase in viscous retardation of the spreading, while the former
is due to the increasingly viscous skin becoming more resistant to deformations.
As expected, the agreement of the numerical solutions with the similarity solution
for h̄(x, t) improves with decreasing η1, becoming quite good for η1 = 0.1 with the
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exception, once again, of the narrow boundary layer region near the flow origin at
which the solutions must match hx = h̄x = Γx = 0.

As can be seen upon inspection of figure 2(c, d ), the spreading rates also begin to
diverge from those predicted by the small-η1 similarity scalings with increasing η1.
In fact, it appears as though another power-law spreading regime is approached for
large η1.

In order to investigate that regime we focus on the dynamics of spreading on
very highly viscous skins, shown in figure 3 for times up to t = 1000, characterized
by η1 = 100 with all other parameters unaltered from figure 2. Despite the large
magnitude of η1, the mucus layer is flat near the flow origin and forms a large
spike at the surfactant leading edge, the magnitude of which increases with time; this
structure exhibits very slow spatial decay to undisturbed conditions far downstream
of the spreading monolayer. The magnitude of the velocity, however, which is greatly
reduced in comparison with that in figure 1 in which η1 = 1, as expected, decreases
with increasing time. Figure 3(d ), which also shows the large difference between the
location at which undisturbed conditions are recovered and that of the maximum in
the total height (coincident with the surfactant leading edge), reveals that spreading
proceeds as t1/2 for large η1 compared to t1/3 as is the case for small values of η1.
This is consistent with the similarity scalings in § 3.1.1.

4.2.3. Comparison with highly viscous bilayers

Here predictions of the highly viscous theory are compared with those for two
Newtonian layers with differing viscosities, both of the same order of magnitude
(Paper I). As a brief summary from this previous work the horizontal velocities
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within each layer in this limit are given by

u(x, z, t) =
σx

η1

(z − h̄) + h̄σx for h̄ < z < h, ū(x, z, t) = σxz for 0 < z < h̄,

(4.3)

where the mucus viscosity, η̂ = η1η0, is no longer promoted by the division by
ε2, and the PCL viscosity remains unity. This comparison, where η1 in the ‘skin’
theory is small so that the longitudinal stress terms play a smaller role is shown
in figure 4. It reveals good agreement between the two theories, with the majority
of the discrepancies being confined to the details of the mucus and PCL peaks in
a narrow region at the surfactant leading edge. Notably absent from the highly
viscous theory profiles is the small shock-like peak that adjusts onto a flat solution
in the PCL profile just after the major shock-like structure, which is a feature of
the standard lubrication predictions (Paper I); this secondary shock-like feature is
apparently suppressed by the presence of the skin. Recovery of undisturbed conditions
occurs further downstream from the surfactant leading edge in the skin case than in
standard lubrication. This is presumably due to the influence of the ‘stretching’ terms
proportional to η1u0xx, which have been promoted in the highly viscous theory but
are absent from standard lubrication. This feature is accentuated by increasing η1 as
was demonstrated in figure 2, and the results for the two theories diverge.

The bilayer theory has a small secondary feature in the PCL solution. This is
located at the position where the similarity solution, D(ξ) in Paper I, reverts from the
solution proportional to ξ valid at ξ = 0, to the constant solution valid at the shock,
ξ = 1, and thus where the secondary shock-like feature occurs. If we call this position
ξc, and require conservation of volume, then, in the notation of Paper I we have∫ ξc

0

2J−
µ1/n

ξdξ +

∫ 1

ξc

2J−
µ1/n

1−
√

1− µ1/nh̄0

J−

 dξ = h̄0, (4.4)

and hence

ξc =

1−
√

1− µ1/nh̄0

J−

 .
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Here J− = [1 + (µ1/n− 1)h̄0] in which n is the flow index (equal to unity in the present
case), µ is the viscosity contrast between the mucus and PCL layers (equivalent to
η1/ε

2 here) and h̄0 is the initial PCL depth. Equation (4.4) simply shows that the
similarity solutions must remain continuous at this second shock position, and hence
this blip should not appear when the solution has evolved sufficiently to become
self-similar. Nevertheless, this small shock is a feature of the numerical solutions
(and appears, at least, to coincide with the predicted value of ξc). This, therefore,
leads us to conclude that it is a consequence of requiring the zero-gradient boundary
conditions at ξ = 0; this can be seen from figure 4, where near x = 0 in the numerical
solution there is a small amount of ‘excess’ mass which accumulates at the shock.

4.3. Significant van der Waals forces

In this section we present results from numerical simulations of the spreading process
driven by Marangoni stresses, and van der Waals and capillary forces; a typical
flow profile of a monolayer spreading on a single viscous film is shown in figure 5.
The introduction of van der Waals force leads to an instability developing behind
the frontal travelling pulse, causing the thinning in this region to become much
more severe, and ultimately film rupture to occur. As noted earlier this could have
serious implications for surfactant delivery: film rupture could lead to quantities of
surfactant remaining trapped. Incidentally, the introduction of capillary forces leads
to a small-amplitude wave travelling ahead of the main shock-like feature.

The same numerical procedures employed to obtain the results in the absence
of van der Waals forces are also used here; the initial and boundary conditions
also remain unaltered. We investigate the effect of the presence of a highly viscous
mucus skin on the possibility of bilayer rupture for the following range of system
parameters: 0.1 6 η1 6 10, 5 6M 6 100, 0.05 6 δ0 = 1− h̄0 6 0.3, 0.001 6 A2 6 0.1,
with Pe = 1000 held constant as in the previous simulations. It proved very difficult
to carry the computations to the final stages of rupture since the spatial derivatives
become increasingly singular and consequently more difficult to resolve as rupture is
approached. In all cases considered, the computations were therefore halted when the
thickness of the mucus layer in the rupture region is at most O(10−3), which yielded
an estimate of the rupture time.

4.3.1. Typical simulation

The evolution of the spreading process including van der Waals and capillary
forces, shown in figure 6 for M = 50, η1 = 1, δ0 = 0.1, A1 = A3 = A4 = 1, A2 = 0.01
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and Pe = 1000, is similar to that presented in figure 1: the formation of a thickened
front in both the mucus and PCL layers, which extends far downstream of the steep
concentration profiles at the surfactant leading edge is also evident here. After a
certain period of time, which is dependent on the chosen parameter values and initial
surfactant concentration profile, the film begins to thin near the flow origin and a
rupture instability begins to develop.

The flow giving rise to this thinning advects surfactant away from the rupture
region, as revealed by inspection of the velocity profile in figure 6(d), which undergoes
an abrupt change in sign at the rupture point; this leads to local surfactant depletion.
The magnitude of the velocity near rupture is large, which is indicative of the strength
of this flow. The magnitude of the van der Waals forces, which are responsible for this
rupture instability, increases below the thinning region leading to further advection of
surfactant from that region. This gives rise to gradients in surfactant concentration
and hence Marangoni stresses that drive flow back towards the rupture region, which
act to stabilize the bilayer against rupture. In this case, the potentially stabilizing
effect of surfactant is insufficient to prevent rupture, which occurs at t ≈ 0.144502 for
the simulation shown.

The PCL thickness profile exhibits an interesting feature: some minor local thinning
at the peak of the PCL thickened front, more evident in figure 2; this feature is absent
from the mucus height profile. The physical mechanism for this thinning is unclear:
why does the PCL front undergo rupture since intermolecular forces, which are
presumably responsible for the thinning, should be insignificant near the front? This
phenomenon, which is spatially coincident with the advancing surfactant front and
present even in the absence of van der Waals forces (see figure 7), may be correlated
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with the shape of these fronts, which are steep step-like profiles and no longer slowly
and smoothly varying as shown in figures 1 and 2.

We have also studied the effect of varying Ai on the rupture dynamics. Our
results (not shown) indicate that the term A2/d

3 provides the dominant contribution.
Increasing A2 while keeping all other parameters constant leads to a decrease in the
rupture time, tr, and rupture location, xr.

4.3.2. Varying the mucus viscosity

Here we investigate the effect of increasing the skin viscosity, η1, on the rupture
dynamics. Figure 8 shows the total height, the PCL thickness and surfactant con-
centration profiles shortly before rupture for η1 = 5 and the effect of η1 on tr and
xr. With increasing mucus viscosity, η1, appears to retard the rupture instability and
displace the rupture point closer to the flow origin. This is not unexpected, since
observation of the evolution equation for u0, equation (2.24), reveals the importance
of the quantityM/η1, which governs the ratio of Marangoni stress to the other forces.
In effect increasing η1 (or equivalently decreasingM), reduces the ratio of Marangoni
forces, thereby reducing the rupture position, xr. Increasing η1 also appears to retard
and, for sufficiently large values of η1, prevent the local thinning at the front in the
PCL layer seen for small values of η1 (see figure 7).

Also evident with increasing η1 is the substantial film height disturbance that
occurs further downstream than for less viscous skins. This causes potential numerical
problems for highly viscous mucus layers, as the computational spatial grid must be
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Figure 9. The effect of δ0 on bilayer rupture. (a) δ0 = 0.3, (b) variation of tr and xr with δ.
The rest of the parameter values remain unchanged from figure 6.

significantly extended, with the result that accuracy is lost in the rupture region;
because of this problem very highly viscous films are not considered here.

4.3.3. Varying the initial mucus layer thickness

Here we investigate the effect of varying the initial depth of the mucus layer δ0.
Figure 9 shows the total height, the PCL thickness and surfactant concentration
profiles shortly before rupture for varying values of δ0 = 3 and the effect of δ0 on
tr and xr. Comparison of figure 6 and figure 9 shows that an increase in the mucus
layer depth appears to significantly increase the time to the initial rupture of the
films, whilst accentuating the local thinning of the PCL layer within the advancing
peak. However, despite the increased time to the rupture event the actual position of
the rupture is displaced further towards the origin with increasing mucus thickness
beyond the value of δ0 = 0.1. This is perhaps not unexpected as the highly viscous
mucus layer serves to retard the spreading Marangoni effects as well as the attractive
intermolecular van der Waals force. However, inspection of figure 9 shows that tr and
xr do not depend monotonically on δ0. This, therefore, leads to the conclusion that
there is a critical initial mucus layer depth, δ0c say, which causes the greatest mass of
the surfactant to become trapped and is therefore most detrimental to the process of
chemical delivery. For instance, in the case shown in figure 9, δ0c appears to have an
approximate value of 0.1.

To further investigate this transition at δ0 ∼ 0.1 a linear stability analysis of a
uniform base state with u0 = 0, h = 1, h̄ = 1 − δ0 and Γ = 1 was performed. The
variation of the wavenumber corresponding to the most dangerous mode, km, and
the associated maximal growth rate, λm, with skin thickness is shown in figure 10;
although the stability analysis is for a different base state, a flat film, one can show
connections with the numerical results. Both graphs have a minimum near δ0 = 0.1;
in the case of km this means the unstable wavelength is largest there and so xr should
be maximized; for λm, the maximal growth rate is smallest there and effectively means
we should have a longer time to rupture, hence tr is maximized.

4.3.4. The effect of varying the Marangoni parameter, M
Here we investigate the effect of changing the Marangoni number, M, to 100 and

the effect of M on tr and xr. Figure 11 shows the total height, the PCL thickness
and surfactant concentration profiles shortly before rupture for varying values of M.
Increasing the Marangoni number has the effect of increasing the displacement of
the rupture position from the origin, whilst at the same time reducing the time taken
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The rest of the parameter values remain unchanged from figure 6.

for the bilayer system to rupture. Despite the fact that in general we would expect
the Marangoni force to be a stabilizing one, it is clearly seen that increasing M
significantly leads to a faster rupture. This can be explained by the fact that whenM
is large, we have a situation with fast spreading, and therefore very rapid thinning of
the mucus behind the propagating peak. This very much thinner layer is then more
sensitive to the rupture instability (as observed in the previous section), and so rupture
time is reduced. Inspection of these flow profiles also shows that an increase in the
magnitude of Marangoni effects is another factor that leads to the exaggeration of
the local thinning of the PCL layer within the advancing peak. For low Marangoni
numbers, 0 6 M 6 10, rupture occurred at the origin, and therefore no surfactant
became trapped. However, it should also be noted at this point that as the Marangoni
number decreases in magnitude the scaling S ∼ ε2s becomes invalid, and we will
recover that M ∼ S. In this case it is possible that surface tension gradients will
affect capillarity and we would need to re-introduce the pressure as

p0 = −
(

1 +
Sσ
σm

)
κ, p̄0 = −

(
1 +
S̄σ̄
σ̄m

)
κ̄,

where S is no longer negligible, to investigate this parameter range. Results from
simulations with this redefined pressure (not shown) yielded minor quantitative dif-
ferences.
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4.3.5. Stream function

In an effort to understand the precise motion of the flow within the fluid layer, we
construct the stream function, ψ, where we define (u0, w0) = (ψz,−ψx) in Cartesian
rectilinear geometry.

The stream function within the PCL layer is

ψ̄ =

[
u0

h̄
+

(
z

3
− h̄

2

)
(p̄0 + φ̄)x

]
z2

2
, (4.5)

where h, h̄, Γ , u0 are available from numerical simulations; we have assumed that
ψ̄ = 0 corresponds to the no-slip region at the base. Within the mucus layer the
stream function is given by

ψ = − h̄u0

2
− 1

12
h̄3(p̄0 + φ̄0)x + zu0, (4.6)

and it is easily seen that at the interface, z = h̄, the stream function is continuous as
must be required, ψ = ψ̄. Comparison of figure 12 with similar plots for an insoluble
surfactant monolayer spreading on a single layer (see for instance figure 1 in Jensen &
Grotberg 1993) reveals that substantial activity occurs in the present case downstream
of the surfactant fronts; this activity is absent in the monolayer case. This activity
is due to the stresses in the mucus layer, which have been increased under our new
scaling, being transmitted much further downstream than in the more usual limit.

With the introduction of van der Waals and capillary forces, shown in figure 12,
the velocity field becomes substantially more complicated with several distinct regions
of activity clearly evident. Initially the flow profile behaves in a similar manner to
the simple spreading case with the addition of a noticeable downward deviation in
the streamline paths coincident with the x-coordinate of the surfactant leading edge.
This buckling of the streamlines becomes more exaggerated with increasing time,
and at approximately t ≈ 0.1 for the typical parameters, a vortex is shed below the
leading edge of the upwelling in the fluid; this is separated from the rest of the flow
region by the ψ = 0 streamline. Indeed a succession of vortices located ahead of
the travelling peak seem to appear, before being swamped at the onset of rupture
by the associated large velocity. However, for smaller values of η1, where the usual
capillary waves are not suppressed, as in this typical simulation, the vortices do not
appear to arise. It is worthy of mention that work involving Stokes flow driven by
surface tension gradients has also revealed the presence of Moffatt vortices ahead of
the shock (Jensen & Halpern 1998).
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Figure 13. (a, b) The scalings and the final profile for the case η1 = 0.1. In this case the mucus layer
ruptures considerably before the PCL. (c, d ) The scalings and the final profile for the case when
η1 = 10 where both layers appear to rupture almost simultaneously.

4.3.6. Comparison with self-similar rupture scalings

Near the rupture event we expect either the mucus alone to rupture, or both PCL
and mucus to rupture together; as an aside, for very thick mucus films one can have
the PCL rupturing first; however this seems irrelevant for the application considered
here. Some sample numerical simulations are shown in figure 13. As mentioned earlier
(§ 3.2), it is possible to deduce scalings near this rupture region and these are shown
in figure 13 together with results from the simulations. It is particularly notable that
the surfactant concentration decreases near rupture, and the Marangoni induced flow
can retard the time to rupture but is unable to prevent rupture occurring.

5. Concluding remarks
Monolayer spreading of insoluble surfactant on the surface of a thin highly viscous

Newtonian mucus layer, overlying an essentially watery Periciliary liquid layer (PCL),
is considered here as a preliminary model for chemical transport along diseased,
or surfactant depleted, airways in which the flow is driven primarily by Marangoni
stresses. We have developed and investigated a model that allows large viscosity
mismatches between the PCL and mucus. The model itself has connections with,
and may have further applications in, other biomechanical flows such as particle
motion in lipid membranes overlying less-viscous phases (Saffman 1976; see also § 3
of Stone 2000). It can also have an impact upon other physical modelling where
the Boussinesq–Scriven surface viscosity theory is at present employed with surface
tension forces. The strongly coupled system of four partial differential equations for
the total film height, PCL thickness and surfactant interfacial concentration, and the
horizontal velocity in the mucus layer is also reminiscent of models for free films and
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jets (Erneux & Davis 1993; Papageorgiou 1995a, b) except that inertia plays no role
in the present application.

An understanding of how the proposed model affects conclusions taken from
conventional single-layer, or bilayer, Newtonian problems requires an investigation
of the spreading process itself, and of possible rupture events. Although scenarios
triggered by the deposition of a finite compact mass of surfactant are considered
here, in the application to surfactant replacement therapy the model would have to
be extended to deal with complex lung geometry; recently, models have emerged for
this with spreading along a single layer (Espinosa & Kamm 1999; Halpern et al. 1998).
For spreading, velocity and pressure scalings are set by a balance between Marangoni
stresses and viscous retardation; the important parameters are the viscosity contrast,
the initial skin thickness and the Péclet number. For rupture the scalings are set by
a balance between pressure and van der Waals forces; here additional parameters
arise: dimensionless Hamaker constants and a dimensionless group reflecting the
relative importance of Marangoni stresses to van der Waals forces, referred to as
the Marangoni parameter. In both cases, numerical simulations of the evolution
equations, for a wide variety of parameters, were considered.

The primary conclusions are that the characteristic scalings for spreading can be
strongly affected by the addition of the surface layer. In some cases much larger
surface deflections are encountered and this may act to block and occlude airways.
The surface layer also acts to smooth sharp changes in the solution profiles, and
transmits stresses ahead of the surfactant leading edge. The applications to transport
in the presence of specific diseases or with specific clinical therapies require an accurate
experimental and clinical characterization of both the mucus/PCL depths at various
lung generations, and the associated mucus rheology. At present, such precise data
are hard to isolate in the literature.

For rupture, one finds that the rupture event can be delayed by the surface
film and reverse flows generated by Marangoni stresses, but neither can totally
resist the van der Waals forces that drive rupture, provided the layer has thinned
sufficiently for them to be active. One finds that increasing the Marangoni effect,
thereby apparently promoting stronger reverse flows near the rupture event, leads to
earlier rupture; however, the increased Marangoni effects drive a stronger spreading
flow thus encouraging rapid thinning and enabling van der Waals forces to become
active earlier. Characteristic scalings emerge in the two distinct rupturing situations,
either mucus alone rupturing or both PCL and mucus rupturing together; the latter
case is much like the rupture of a single layer, and the former follows different scalings
verified numerically. Rupture is often an unwanted effect for many coating, painting
and adhesive flows, several of which can involve different phases and thus the effects
described here will be useful in characterizing when rupture is likely, and how it may
be retarded.

M. R. E. W. thanks the EPSRC for funding through a Research Studentship; ad-
ditional support is through grant GR/N 34895/01. R. V. C. thanks Neil Balmforth
(UC Santa Cruz) for many helpful and interesting conversations on a mathematically
closely related topic, lava flows, that have undoubtedly had an influence upon this
work.

Appendix
Here we provide details of the derivation of the velocity field in the mucus and

PCL layers in the modified lubrication approximation. We shall begin by considering
the evolution of the upper highly viscous ‘skin-like’ mucus layer.
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The leading-order governing equations in the mucus layer become

u0zz = 0, −p0z + η1w0zz = 0, u0x + w0z = 0, (A 1)

and to second order we have

−p0x + η1[u0xx + u2zz] = 0. (A 2)

Similar expansion of the boundary conditions at z = h0 yields

u0z = 0, p0 − 2η1w0z = 0, (A 3)

to leading order in ε and the following to second order:

η1[u2z + w0x − 2h0xu0x] + p0h0x = σ0x. (A 4)

From equations (A 1) and (A 3) it can be readily shown that u0 ≡ u0(x, t) and
the skin velocity is independent of depth; this is a useful simplification that allows
considerable progress to be made. This is also the crucial simplification for models of
viscous jets and threads, in which the leading-order axial velocity is independent of
the radial coordinate. Physically, this is due to the large viscosity of the mucus layer,
which makes it resistant to shear to leading order. The function, u0(x, t) is, however, as
yet undetermined. We also note that the pressure is deduced to be p0(x, t) = −2η1u0x

everywhere within the skin, independent of depth. Using equation (A 2) it can be
shown that

u2z = 3(h0 − z)u0xx + F(x, t), (A 5)

where F(x, t) is not required for the leading-order dynamics, and integration of the
continuity equation in (A 1) yields

w0 = (h0 − z)u0x + h0t + u0h0x. (A 6)

Substitution of equations (A 5) and (A 6) into the shear stress in the skin, τ0xz(x, z, t) =
η1(u2z + w0x), yields to leading order

τ0xz(x, z, t) = 4η1(h0 − z)u0xx + 4η1h0xu0x + σ0x. (A 7)

Evaluation of τ0xz at the base of the skin, z = h0−δ0, in which δ0 is the skin thickness,
will later be used to fully determine the velocity field.

The leading-order equations in the PCL, 0 < z < h0 − δ0, are simply given by

ū0zz = p̄0x, p̄0z = 0, ū0x + w̄0z = 0; (A 8)

these are the usual governing equations that one obtains in the usual lubrication
scaling for the Newtonian-Marangoni-driven single-layer problem (Jensen & Grotberg
1992). At the interface z = h̄0 to leading order, the continuity of velocity, shear stress
and normal stress conditions become

u0 − ū0 = 0, w0 − w̄0 = 0, u0z = 0, 2η1w0z − p0 − p̄0 = 0. (A 9)

From (A 8) and (A 9) it can be shown that p̄0 = 0 throughout the PCL liquid layer.
To next order

η1(u2z + w0x − 2h̄0xu0x) + p0h̄0x = ū0z. (A 10)

In the PCL layer ū0 ≡ ū0(x, z, t) and the velocity at the base of the skin is continuous,
so u0(x, t) = ū(x, h0 − δ0, t). Thus, using the first-order shear stress condition at the
interface, (A 10), we obtain

ū0(x, z, t) = z(η1[u2z + w0x − 2h̄0xu0x] + p0h̄0x)
∣∣∣
h̄0

=

[
u0

h̄0

]
z.
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Finally, using continuity of shear stress at z = h̄0 we obtain an evolution equation for
u0(x, t) as

u0(x, t) = h̄0[4η1δ0u0xx + 4η1(h0x − h̄0x)u0x + σ0x]. (A 11)

This equation must be solved to determine u0(x, t), and hence the velocity everywhere
in the liquid layer.

The evolution equations for h̄0, h0 and Γ0 are determined using the leading-order
kinematic boundary conditions at z = h0 and z = h̄0 and the equation of surfactant
mass conservation at z = h0.
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